В предыдущей статье (2014, № 1–2) были рассмотрены общие механизмы впитывания жира продуктом при обжарке во фритюре. В этой части обратим внимание на использование гидроколлоидов как одного из способов уменьшения содержания жира и, следовательно, калорийности продукта.
Существует два основных способа применения гидроколлоидов в качестве антижирового барьера при обжарке продуктов. К первому относится формирование на поверхности продуктов, подлежащих жарке, так называемых «съедобных оболочек» (пленок). Чаще пленки готовят из водных растворов гидроколлоидов. Во втором способе гидроколлоиды вводят в состав жидкого теста (кляра) для панировки. Общим для отмеченных способов является то, что они создают внешние поверхностные антижировые барьеры.
Использование поверхностных барьеров было изначально предложено в конце шестидесятых годов XX века для увеличения срока годности мяса, а впоследствии – для улучшения качества мучных изделий и других свежих, замороженных и обработанных полуфабрикатов. Наиболее важными функциями барьера являются предотвращение: 1) убывания воды из массы, что особенно важно для сохранения природных свойств изделия; 2) проникновения жира, что понижает калорийность продукта на выходе (Balasubramaniam , 1997 , Chidanandaiah, 2005; Zaritzky 2011).
К покрытию для продуктов, обжариваемых во фритюре, предъявляются жесткие требования. Оно должно иметь низкую проницаемость, быть эластичным и прочным, а в процессе хранения – не образовывать трещины (Williams, 1999). Оболочка упрочняет и сглаживает поверхность изделия, оставляя лишь незначительное количество пустот (рис. 1), что позволяет сократить испарение влаги и снизить уровень впитывания жира, предот- вращая замещение им воды (Mellema, 2003; Singhtong, 2009).
Рис. 1. Микрофотография пончиков, обжаренных в течение 12 мин: a – поверхность образца без покрытия,
б – поверхность образца с покрытием (Bertolini Suárez и др., 2008)
Согласно первому из отмеченных способов гидроколлоиды используются в съедобных оболочках в виде водных растворов или дисперсий биополимеров. Наиболее широко в пленкообразующих растворах употребляются полисахариды, белки, липиды и их комбинации, которые полностью или частично растворимы в воде и относятся к эмульгаторам, гелеобразующим веществам или загустителям (Skurtys, 2010). При обжарке вода из раствора удаляется вследствие испарения, а высокомолекулярные полимеры сближаются и формируют поперечные межмолекулярные связи, что обусловливает образование геля в виде сплошной пленки.
Среди обширного разнообразия полисахаридов, которые используются в пленкообразующих растворах, наиболее исследованными являются простые эфиры целлюлозы, такие как метилцеллюлоза (МЦ) и гидроксипропилметилцеллюлоза (ГПМЦ). Эти полисахариды в жидкой среде проявляют уникальные свойства обратимого гелеобразования. Гелеобразование МЦ и ГПМЦ главным образом является результатом взаимодействия между молекулами, содержащими метоксильные группы. Наличие гидроксипропильных групп существенно меняет гелеобразующие свойства. Их относительное увеличение приводит к повышению температуры гелеобразования и снижению прочности геля. Для ГПМЦ температура гелеобразования выше, а прочность геля – ниже, чем у МЦ. С увеличением молекулярного веса целлюлозы прочность геля повышается, а температура гелеобразования не меняется (Sarkar, 1997).
Экспериментально выявлено, что оболочки, содержащие производные целлюлозы ГПМЦ и МЦ, уменьшают потерю воды в мучных изделиях, обжаренных во фритюре, на 30 % (Williams, 1999). Для целой группы мучных изделий и крахмалосодержащих продуктов было отмечено, что барьерные свойств а МЦ выше, чем у ГПМЦ (Williams, 1999; Garcia, 2002). Сравнительные исследования МЦ и трех видов ГПМЦ, которые различались значениями метоксильного и/или гидроксипропильного замещения, показали, что включение целлюлозы с наименьшим уровнем метоксильного замещения приводит к наибольшему снижению уровня жира в продукте (Primo-Martin, 2010). Кроме того, растяжимость и упругие свойства пленок можно менять при добавлении в раствор полимеров-пластификаторов – полиолов, а растекаемость – с помощью увлажняющих агентов (Garcia, 2002). Пленки из МЦ без добавления пластификатора имели трещины, в то время как введение сорбита в раствор приводило к целостности оболочки (рис. 2).
Рис. 2. Микрофотография обжаренных дисков теста, покрытых метилцеллюлозой (1 %): а – без пластификатора;
б – с добавлением 0,75 % сорбитола (Garcia, 2002)
Помимо ГПМЦ и МЦ, в пленкообразующие растворы начали вводить белки, липиды и их комбинации. Изучено влияние одиннадцати гидроколлоидов на качество композитных пленок для мучных изделий (Albert, 2002). Для сравнения гидроколлоидов между собой использовались следующие показатели: влияние способов приготовления раствора на качество оболочки, пригодность полученной пленки для покрытия продуктов, подвергающихся жарке, а также барьерные свойства оболочки по отношению к воде и жиру. В результате проведенных исследований было установлено, что гидроколлоиды белковой природы (желатин, пшеничная клейковина и казеинат натрия) не подходят для приготовления оболочек. Это обусловлено тем, что желатин при температуре обжаривания тает и не образует пленки, а пшеничная клейковина и казеинат натрия не обеспечивают получение оболочек требуемой толщины. Лучшими антижировыми пленками признаны композиции МЦ с изолятом соевого белка и молочной сывороткой. Полученные композитные пленки обеспечивали максимальное снижение потери воды и впитывания жира. Улучшить барьерные свойства оболочек позволяют также композитные пленки, приготовленные на основе смеси камедей с белками сои, липидами и восками (Rayner, 2000).
К первому способу применения гидроколлоидов в качестве антижирового барьера при обжарке продуктов можно условно отнести и применение сухих покрытий (Lee, Kim и др., 2008). Установлено, что применение композита из пшеничной муки и микрокапсулированной оболочки сои позволяет сократить содержание жира в пончиках с 40,5 до 26 %. Авторы предположили, что микрокапсулированная оболочка сои создает защитный слой вокруг частиц муки, уменьшая проникновение жира в изделие (рис. 3).
Рис. 3. Схематичное изображение снижения поглощения жира при обжарке продукта с покрытием по сравнению с контрольным образцом
Обратимся теперь ко второму способу использования гидроколлоидов в качестве антижирового барьера, а именно к применению их в составе жидкого теста, которое создает однородный слой на продукте при обжаривании во фритюре. Для покрытия продуктов и обжаривания в жире используются два основных вида жидкого теста: адгезионное и взбитое.
Адгезионное тесто используется в качестве промежуточного слоя между кусочком продукта и внешним слоем панировки. Тесто функционирует как клей, который позволяет панировке покрыть поверхность продукта.
Кляр, или жидкое тесто с разрыхлителем (взбитое тесто), используется в качестве полужидкой смеси, в которую погружается продукт перед жаркой. Тесто создает внешнюю оболочку продукта. Разрыхлители, входящие в состав теста для кляра, создают пенную структуру, делая оболочку продукта пористой и легкой, а готовому продукту придают хруст (Brock, 2001).
Основное требование, которое предъявляется к обоим видам теста, состоит в том, что оно должно покрывать продукты равномерным слоем, оставаясь прилипшим на всех последующих стадиях производства. Покрытие из теста обязано выдерживать хранение в замороженном виде и транспортировку.
При термообработке продукта до готовности в тесте не должны возникать трещины и иные дефекты. Кроме того, для адгезионного теста ключевыми показателями качества являются клейкость и вязкость. Вязкость жидкого теста существенно влияет на качество оболочки, определяет ее поведение во время жарки, окончательные свойства и текстуру после процесса жарки (Dogan, 2005; Loewe, 1990; Loewe, 1993). В общем случае, чем выше вязкость жидкого теста, тем лучше оно прилипает к продукту (Nasiri, 2010; Dogan, 2005). Гладкость и толщина слоя теста, его цвет и прочие характеристики ненуждаются в тщательном контроле, так как окончательный вид продукта полностью зависит от внешнего слоя панировки.
Самое простое жидкое тесто, которое применяется для покрытия продуктов при обжаривании в жире, состоит из муки и воды. В настоящее время состав жидкого теста для покрытия стал сложнее. В его состав входят такие компоненты, как крахмал, различные белки (яйца или клейковина), разрыхлители и добавки.
Благодаря хорошим водоудерживающим свойствам, в качестве добавок, которые часто вводят в состав жидкого теста, используются камеди, такие как камедь каррайи, гуаровая камедь, трагакантовая камедь и камедь бобов рожкового дерева (Meyers, 1990; Mallikarjunan, 1997). Однако, как показывают исследования, камедь не является наилучшей добавкой. Установлено (Bajaj, 2007), что введение в жидкое тесто гуммиарабика (1 %) обеспечивает максимальное снижение впитывания жира. Второе место после гуммиарабика по антижировой эффективности занимает каррагинан. По способности создавать антижировой барьер камедь каррайи и гуаровая камедь занимают среди гидроколлоидов третье и четвертое места. Отмечено, что трагакантовая камедь и камедь бобов рожкового дерева не относятся к эффективным антижировым барьерам (снижение в содержании жира составляет менее 10 %). В более позднем исследовании обнаружено, что введение гелланововой камеди (0,2 5 %) совместно с альгинатом натрия или КМЦ в кляр для продукта из гороховой муки, позволяет уменьшить содержание жира на 24,6 % (Bajaj, 2007).
Гелеобразующие свойства отмеченных выше производных целлюлозы – МЦ и ГПМЦ – используются и в жидком тесте для создания эффективного антижирового барьера. Проведенные исследования показали, что эффективность барьера определяется концентрацией МЦ и ГПМЦ. Оптимальное количество для ГПМЦ составляет 0,25 %, а для МЦ – 2,0 % (Annapure, 1999). Увеличение количества целлюлозы больше оптимального приводит к формированию толстой оболочки, которая под избыточным давлением пара во время жарки разрывается, что ведет к нарушению целостности пленки. Немаловажным фактором при введении МЦ и ГПМЦ в жидкое тесто является достижение оптимальной гидратации целлюлозы. Простейшим методом введения гидроколлоидов в тесто является смешивание компонентов рецептуры с последующим добавлением холодной воды в смесь. Температура холодной воды понижается по мере увеличения в МЦ и ГПМЦ количес тва метоксильных групп. Предложен и другой способ гидратации, который предусматривает растворение в воде целлюлозы перед смешиванием с жидким тестом. Однако при введении гидратированной МЦ и ГПМЦ в кляр эффективность барьера, по сравнению с добавлением гидроколлоидов в сухом виде, снижается (Funami,1999). Для разных видов продуктов, покрытых кляром с ГПМЦ, барьерные свойства оказываются более эффективными, если полисахарид гидратируется вместе с другими сухими ингредиентами жидкого теста (Meyers, Conklin, 1990).
Другим фактором, который связывается с эффективностью барьера, является температура жидкого теста в момент нанесения. Жидкое тесто с добавками МЦ, приготовленное методом сухого смешивания, выдерживали в течение часа при температурах 5, 15 и 25 ºС. Обнаружено, что эффективность барьера снижается при уменьшении температуры набухания полисахарида (Sanz, 2004).
В последнее время МЦ используется в кляре для замороженных полуфабрикатов, которые обжариваются без предварительной жарки (Fiszman, 2009; Sanz & Salvador, 2004). Этап предварительной жарки заменяется тем, что замороженный продукт с покрытием из жидкого теста с МЦ, погружают в горячую воду с температурой (70–80 °С) в течение 30 с. Это позволяет ускорить гелеобразование МЦ, при этом жидкое тесто приобретает вязкую консистенцию. При обжарке полуфабрикатов во фритюре наблюдается существенное снижение способности впитывать жир.
В заключение суммируем приведенные выше сведения. Вопросы качества и безопасности продуктов, обжаренных во фритюре, активно исследуются и остаются актуальными в течение длительного времени. Интерес к этим вопросам не угасает, так как ассортимент изделий, обжаренных во фритюре, расширяется. В качестве антижирового барьера традиционно рассматриваются пригодные в пищу однослойные или многослойные оболочки (пленки), наносимые на поверхность продукта перед обжаркой. Наиболее значительной функцией, выполняемой съедобной пленкой, является предотвращение потери влаги и образование гладкой корочки, способствующей снижению абсорбции жира. Пищевые гидроколлоиды широко используются в жареных продуктах в виде водных растворов для съедобных пленок или в составе многокомпонентного теста для кляра. Несмотря на разнообразие исследованных гидроколлоидов (а может быть, именно и вследствие этого разнообразия), проведенные исследования не дают однозначного ответа на вопрос о том, какие гидроколлоиды и/или их комбинации имеют лучшие барьерные свойства. Кроме того, покрытия одного и того же состава на различных продуктах проявляют неодинаковые барьерные свойства. Видимо, можно лишь утверждать, что некоторые съедобные оболочки, особенно те, которые содержат смеси гидрофильных полисахаридов и белков, являются хорошими антижировыми барьерами. Имеет смысл активизировать исследования по кругу проблем, затронутых в настоящей статье.
Источник: Журнал "Масла и жиры" |